Warning: mkdir(): No space left on device in /www/wwwroot/nxwwmm.com/func.php on line 251

Warning: file_put_contents(./cachefile_yuan/neimenghjs.com/cache/3d/c3653/93e52.html): failed to open stream: No such file or directory in /www/wwwroot/nxwwmm.com/func.php on line 239
负压风机外框变速风机和变速泵应用举例浅析流量调节阀的选型设计_襄烁机电设备


太阳集团

工程案例展示
太阳集团

太阳集团通风降温系统

电 话:0573-83418060> 传 真:0573-83418060
联系人
售前咨询:15068216608
技术指导:18858318765
售后服务:15821073963
地 址:浙江省嘉兴市南湖区

风机安装与维护

负压风机外框变速风机和变速泵应用举例浅析流量调节阀的选型设计

 通过5个工程实例,探讨在供热空调工程中利用变速风机和变速泵代替调节用风阀水阀实现风和水工程的调节的可能性。分析表明,这样做可以节省运行能耗,同时改善工程的调节品质,工程的初投资一般也不会增加。
  水泵和风机能耗约占供热空调工程总能耗的40?这些能耗中的1/3左右被各种调节阀门所消耗,但这样大的代价并没有换来好的调节效果,反而导致工程中许多问题发生。采用变速风机和变速泵充当调节手段,可节省这部分能耗,并可解决许多调节中的困难。
  关键词:变频调节水工程风工程变速水泵变速风机
  1、引言
  在暖通空调工程中,使用大量的风阀水阀对工程中的风量水量进行调整,使其满足所要求的工况。它们的调节原理是增加工程的阻力,以消耗泵或风机提供的多余的压头,达到减少流量的目的。因此这些调节阀的调节作用是以消耗风机或水泵运行能耗为代价的。目前暖通空调工程中愈来愈多地使用自动控制工程。为实现自控,许多风阀水阀还要使用电动执行机构。
  目前质量好的电动水阀价格为几千甚至上万元。电动风阀亦需要几千元。电动风阀水阀的费用常常占到自控工程总费用的40%以上。能否改变工程的构成方式,减少使用这些既耗能、又昂贵的阀门,用其它方式实现对流量的调节?风机水泵与风阀水阀是一一对应的两类调节流量的设备。
  风机水泵为流体提供动力,而风阀水阀则消耗流体多余的动力。因此,若用风机水泵代替风阀水阀,不是在能量多余处加装阀门,而是在能量不足处增装水泵或风机,通过调节风机水泵的转速,同样可以实现对工程的流量调节。
  此时由于减少了调节阀,也就减少了阀门所消耗的能量,因此会减小运行能耗。同时,目前可变转速的风机、水泵价格与相同流量的电动风阀、水阀价格接近,甚至更低,因此初投资也不会提高。从这一思路出发,本文先给出几个用泵代阀的例子,然后进一步讨论这一方案对暖能空调工程的意义及要注意的问题,以期引起大家的讨论。
  2、实例分析
  2.1简单工程的流量控制
  一个简单的控制循环流量的工程,泵P提供动力以实现水通过阀V、管道及用户U间的循环。图2给出当阀全开、泵的转速n=n0时工程的工作点。此时,流量为G0,水泵工作效率为η0,即效率最高点。要使流量减小一半,一种方式是将阀门关小,使管网等效阻力特性曲线向左偏移,此时泵的效率降低至η1,压力升至p1。
  由于压力升高,效率降低,因此尽管流量减少至一半,泵耗仅减少20%~30%,此时除阀门以外的管网部分由于其阻力特性不变,因此仅消耗压降p0/4,剩余部分3(p0+(p1-p0))/4均消耗在阀门上,它消耗了此时泵耗的80%,这就是为什么说调节阀消耗了大部分水泵能耗的依据。此外,水泵工作点偏移造成的不稳定、阀关小后大的节流和压降引起的噪声,都对工程有不良影响。
  若保持不变,但将泵的转速降至50%,图2同时给出此时的工作状况,这时管网的阻力特性曲线不变,泵的工作曲线下移,泵的工作效率仍将为η0,压力p2为p0/4。这样,减少流量后泵耗仅为原来的1/8,具有极显著的节能效果。同时,由于泵的工作点及阀的位置均未变,因此工程工作稳定,且不会有节流噪声。此简单例子说明:
  (1)当调节阀产生调节作用时,将消耗其所在支路的大部分流体动力。并且由于改变了管网阻力特性,使管网中的动力机械工作点偏移,在多数情况下这将导致效率下降。
  (2)当采用变速方式调节流量时,泵或风机能耗可与流量变化的三次方成正比。并且由于工程阻力特性不变,泵或风机的工作点不变,因此效率不变,泵、风机及工程均可稳定地工作。
  (3)以调整泵或风机的转速来调整流量应该是流量调节的最好手段。
  2.2供热水网
  若工程设计合理,泵选择适当,则最远端用户处的余压恰好为它所需要的压头,阀V5全开,不多消耗能量。此时,若各用户流量相等,彼此距离相等,主干管上比摩阻相同且忽略阀门全开时的阻力,对于n个用户,阀门V1消耗的能量与用户外管网所消耗的总能量的百分比EV1为:
  EV1=(1/n)×((n-1)/n)
  第k个阀门所消耗能量与用户外管网总能耗的百分比EVk
  EV1=(1/n)×((n-1)/n)
  前n-1个阀门共消耗的能量为:
  当热用户个数足够多时,(n-1)/(2n)约等于50%,也就是消耗在外网的能耗约有一半被各支路的调节阀所消耗。一般用户侧真正需要的扬程仅为循环泵扬程的20%~30%,即外网消耗70%~80%。因此,总泵耗的35%~40%的能量被调节阀消耗掉。有时为安全起见,循环泵的扬程还要选大些,然后再通过图3中的阀门V0将多余部分消耗掉。由此使一般供暖用热水网中调节阀消耗一半以上的泵耗。
  若改用图5方式连接热水管网,在各用户处安装用户回水加压泵,代替调节阀,减小主循环泵的扬程,使其只承担热源及一部分干管的压降,用户的压降及另一部分干管压降由各用户内的回水加压泵提供,则其水压图见图6。
  此时无调节阀,因此也无调节阀损失的泵耗,用户处各个回水加压泵的扬程应仔细选择。若选择过大,再用阀门降低同样会消耗能量。但如果安装变速泵则可以通过调整转速来实现各个用户所要求的流量,因此不再靠调节阀消耗泵耗,这样,尽管多装了许多泵,但运行电耗将降低50%以上。
  在这种情况下,若各用户要求的流量变化频繁,整个工程的总流量亦在较大范围内变化,总循环泵也可用变频泵,并根据干管中部供回水压差(见图5、6中点A)来控制其转速,使该点压差维持为零,则工程具有非常好的调节性能与节能效果。分析表明,当采用如图3常规的管网方式时,若由于某种原因,一半用户关闭,不需要供水时,未关的用户水量会增加,最大的流量可增加50%以上,而同样的管网采用图5的方式,并且对主循环泵的转速进行上述方式的控制,则同样情况下未关闭的用户的水量增加最大的不超8%,工程的水力稳定性大为改善。
  此方面的进一步详细分析见文献[1],这一方案准备在已开始施工的杭州热电厂冷热联供热网中使用,各用户为吸收式制冷机、生活热水用换热器,冬季则为建筑供暖及生活热水。分析表明,对于这种负荷大范围变化的工程,采用这种方式,比常规方式节省泵的电耗62%,并改善了工程的水力稳定性。同时还使整个工程压力变化范围减小,从而可降低管网承压要求,处长管网寿命。在各用户处安装调速泵所增加的费用基本上可以从各用户省掉的电动调节阀及节省的用电增容费中补齐,因此总投资可以不增加甚至有所降低。
  2.3空调水工程
  为减少水泵电耗,便于工程调节,许多工程采用两级泵方式,如图7。泵组P1可根据要求的制冷机的运行台数而启停,其扬程仅克服蒸发器阻力及冷冻站内部分管路的压降,泵组P2则克服干管及冷水用户的压降。为了节能,P2有时还采用变速泵,根据用户要求的流量调节泵的转速,调节规则是维持最远端用户处的供回水压差为额定的资用压头。文献[2]中指出,P2采用变速泵后,其能耗并非如厂商所宣传的那样“与流量的三次方成正比”。
  假设冷水用户所要求的最大压降与干管最大流量下的压降各占50%,例如均为5m,则泵组P2的转速就要按照使最末端压差恒定为5m来控制。假设各用户要求的流量均为最大流量的50%,则各用户本身的调节阀都纷纷关小,此时末端压差仍为5m,干管流量降低一斗,故压降变为1.25m,泵组P2所要求的压降从原来的10m降至6.25m,流量虽降至一半,但泵的工作点左偏,效率降低,因此泵耗约为最大流量时的45%左右,而并非按照三次方规律所预测的12.5%。造成这种现象是由于现象是由于各用户调节阀关小,消耗了多余的这部分能量。
  此外,如果干管压降占P2扬程的一半,则如同上一例所分析,由于各用户远近不同,这部分泵耗的一半也被各用户的调节阀所消耗。并且空调工程为了改善其调节性能,还希望调节阀两侧压差占所在支路资用压头的一半以上。这样,平均估计,即使采用变速泵,泵组P2的能量中也有60%以上被各个调节阀消耗掉。
  再分析这种工程的稳定性。当由于某种原因,一些用户关闭,一些用户调小,总流量降低50%时,干管压降减少,泵的转速未变化的用户的流量最大增加幅度约为10%~20%,与泵的性能曲线形状有关。这时只要将转速相应地减少,即可维持原流量。采用这种方式,用各个小变频泵代替一组大变频泵,由于总功率降低20%~30%,因此价格不会增加。采用新方案后,还省掉各个空调机的电动调节阀,因此初投资将降低。

一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节排热器的水量来改变排热器的排热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节排热器的水量,从而来达到控制室内温度的目的。

温控阀一般是装在排热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管工程,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管工程,有的用于单管工程。用于双管工程的二通温控阀阻力较大;用于单管工程的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器置于要求控温的房间,阀体置于供暖工程上的某一部位。

2、温控阀的选型设计

温控阀是供暖工程流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖工程如果不设置温控阀就不能称之谓热计量收费工程。

在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。

在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10 mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一KV值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提高温控阀的调节性能。

二、电动调节阀

电动调节阀是适用于计算机监控工程中进行流量调节的设备。一般多在无人值守的热力站中采用。电动调节阀由阀体、驱动机构和变送器组成。温控阀是通过感温包进行自力式流量调节的设备,不需要外接电源;而电动调节阀一般需要单相220V电源,通常作为计算机监控工程的执行机构(调节流量)。电动调节阀或温控阀都是供热工程中流量调节的最主要的设备,其它都是其辅助设备。

三、平衡阀

平衡阀分手动平衡阀和自力式平衡阀。无论手动平衡阀还是自力式平衡阀,它们的作用都是使供热工程的近端增加阻力,限制实际运行流量不要超过设计流量;换句话说,其作用就是克服供热工程近端的多余资用压头,使电动调节阀或温控阀能在一个许可的资用压头下工作。因此,手动平衡阀和自力式平衡阀,它们都是温控阀或电动调节阀的辅助流量调节装置,但又是非常重要的,如果选型不当,或设计不合理,电动调节阀或温控阀都不能很好工作。

1、手动平衡阀

1.1 手动平衡阀的工作原理

手动平衡阀是一次性手动调节的,不能够自动地随工程工况变化而变化阻力系数,所以称静态平衡阀。手动平衡阀作用的对象是阻力,能够起到手动可调孔板的作用,来平衡管网工程的阻力,达到各个环路的阻力平衡的作用。能够解决工程的稳态失调问题:当运行工况不同于设计工况时,循环水量多于或小于设计工况,由于平衡阀平衡的是工程阻力,能够将新的水量按照设计计算的比例平衡的分配,使各个支路的流量将同时按比例增减,仍然满足当前负荷下所对应的流量要求

1.2 手动平衡阀的选型与设计中应注意的问题(2)

(1)阀门特性曲线决定了阀门的调节性能,如截止阀的流量曲线,如果认为95%~100%之间的流量变化是没有意义的,那么开度从0~5%即实现了流量的全程变化,这样的阀门是不能作为水利工况平衡调节使用的。由于阀门理论特性曲线实在顶压差下测定的,而实际工况只要阀权度不为1则阀门在小开度线阀门前后压差大,大开度是阀前后压差小,导致阀dG/dC值在小开度变大,在大开度时变小,使阀门实际工作曲线向快开方向偏移,阀权度越小其偏移越大,对于直线特性的阀门由于实际性能的偏移会导致阀门的有效调节的得开度空间变小,因此阀门的理论性曲线以下弦弧如等百分比特性为好。等百分比特性曲线阀门,在阀权度0.3~0.5时实际工作曲线可能接近直线特性。

(2)通常阀门在小开度情况下阀门的流速过高,在阀后会形成旺盛紊流的涡旋区,涡旋区和新压力很低,该处压力低于水温对应的饱和压力时水蒸气的闪发挥导致汽水击现象:严重的噪音,阀门及管道的振动,阀门、管道、管支架的破坏。防治这种事故的发生首先在阀们流道设计上考虑阀塞和阀座在小开度时形成狭长的节流通道,约束旺盛紊流涡旋的形成;其次选用阀门时尽量加大阀权度,以避免阀门在小开度下运行。另外,在不牵涉压力工况问题时尽量碱平衡阀安装在水温较低的回水管道上。

2、自力式平衡阀

2.1 自力式平衡阀工作原理

自力式平衡阀则可在没有外接电源的情况下,自动实现工程的流量平衡。自力式平衡阀是通过保持孔板(固定孔径)前后压差一定而实现流量限定的,因此,也可称定流量阀。

定流量阀作用对象是流量,能够锁定流经阀门的水量,而不是针对阻力的平衡。他能够解决工程的动态失调问题:为了保持单台制冷机、锅炉、冷却塔、换热器这些设备的高效率运行,就需要控制这些设备流量固定于额定值;从工程末端来看,为了避免动态调节的相互影响,也需要在末端装置或分支处限制流量。

在设计中应注意的问题

自力式流量控制阀的缺点是在于阀门有最小工作差的要求,一般产品要求最小工作压差20KPa,如果安装在最不利回路上,势必要求循环水泵多增加2米水柱的工作扬程,所以应采取近端安装,远端不安的方法。用户离热源距离大于供热半径的80%时就不要安装这种自力式流量控制阀。

四、差压调节阀

1、差压调节阀的原理

差压调节阀的原理,本质上和自力式平衡阀是一样的。只不过自力式平衡阀中,孔板是作为一个部件存在于阀体中的;而差压调节阀中没有孔板这一部件,而是把差压调节阀后面的工程看作一个孔板,因此,调节阀的差压值实际指的是其后工程出入口压力差值。 从差压调节阀的结构可以看出:这种调节阀,目的是控制其后工程出入口压力差值固定不变。基本功能是根据热用户热负荷的需求,自动调整热用户的运行流量。当一幢建筑,由于有的热用户要求室温降低,则相应房间温控阀的开度变小,导致差压调节阀的压差值变大,超过设定值,此时压差调节阀自动关小阀芯,增大节流作用,使其工程压差值减小,直至恢复为设定值。最终的效果是减少流量,适应热用户的需热要求,借以减轻温控阀的频繁操作。热用户要求提高室温时,压差调节阀的作用正好相反(3)。

2、在设计时应注意的问题

有人认为在各户内工程或立管上,都应装置压差调节阀。经过模拟计算:如果在建筑物的热入口,统一安装了平衡阀(含手动、自力式)或压差调节阀(但设计要合理),则室内温控阀在任何调节范围内,其前后压差都不会超过6~10 mH2O,即温控阀都能在合理的条件下工作。因此,过多安装压差调节阀没有必要,也是不经济的。

五、循环水泵变流量运行时,流量调节阀的选择

这里主要指手动平衡阀、自力式平衡阀和压差调节阀的选择。在循环水泵变流量运行时,手动平衡阀呈等比失调,最有利于温控阀的运行;但其缺点是手工操作太多,难以实现理想调节。循环水泵变流量运行,各热用户入口最理想的设定压差值应是随室外气温变动的。对于这一点,自力式平衡阀、差压调节阀,都不够理想,但不会出现调节的失控。因此可采用这一类型的调节阀,这对提高供热工程的调节性能是有好处的。



负压风机外框
车间降温设备
水帘生产厂家

太阳集团是水帘生产厂家|环保空调生产厂家|屋顶风机厂家|,太阳集团承接规划:猪场降温|车间降温|厂房降温|猪场通风|车间通风|厂房通风|屋顶排风机|屋顶排热|厂房通风降温|车间通风降温|通风换气排热降温工程|屋顶风机安装|负压风机安装|水帘安装|环保空调安装|通风设备安装|通风降温设备|通风系统安装案例|通风降温系统|屋顶通风机|屋顶排风系统
相关的主题文章:
台湾风机厂家